Modelling structural relaxation in polymeric glasses using the aggregation–fragmentation concept

نویسنده

  • Aleksey D. Drozdov
چکیده

Governing equations are derived for the kinetics of physical aging in polymeric glasses. An amorphous polymer is treated as an ensemble of cooperatively rearranged regions (CRR). Any CRR is thought of as a string of elementary clusters (EC). Fragmentation of the string may occur at random time at any border between ECs. Two string can aggregate at random time to produce a new string. The processes of aggregation and fragmentation are treated as thermally activated, and the rate of fragmentation is assumed to grow with temperature more rapidly than that for coalescence. This implies that only elementary clusters are stable at the glass transition temperature Tg, whereas below Tg, CRRs containing several ECs remain stable as well. A nonlinear differential equation is developed for the distribution of CRRs with various numbers of ECs. Adjustable parameters of the model are found by fitting experimental data for polycarbonate, poly(methyl methacrylate), polystyrene and poly(vinyl acetate). For all materials, fair agreement is established between observations and results of numerical simulation. For PVAc, the relaxation spectrum found by matching data in a calorimetric test is successfully employed to predict experimental data in a shear relaxation test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enthalpy recovery in semicrystalline polymers

Constitutive equations are derived for enthalpy recovery in polymeric glasses after thermal jumps. The model is based on the theory of cooperative relaxation in a version of the trapping concept. It is demonstrated that some critical temperature Tcr and some critical degree of crystallinity fcr exist in a semicrystalline polymer above which the energy landscape becomes homogeneous and structura...

متن کامل

Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization

A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...

متن کامل

Dynamic light scattering in mixed alkali metaphosphate glass forming liquids.

We report the first ever photon correlation spectroscopy performed on single alkali and mixed alkali metaphosphate glasses at refractory temperatures above the glass transition. We find not only a significant decrease in the glass transition temperature but also a decrease in fragility for the mixed alkali composition as compared with the single akali glasses. We argue that structural relaxatio...

متن کامل

Atomistic simulation of aging and rejuvenation in glasses

Slow structural relaxation ("aging") observed in many atomic, molecular, and polymeric glasses substantially alters their stress-strain relations and can produce a distinctive yield point. Using Monte Carlo simulation for a binary Lennard-Jones mixture, we have observed these phenomena and their cooling-rate dependences for the first time in an atomistic model system. We also observe that aging...

متن کامل

Atomic Dynamics in Metallic Liquids and Glasses

How atoms move in metallic glasses and liquids is an important question in discussing atomic transport, glass formation, structural relaxation and other properties of metallic glasses. While the concept of free-volume has long been used in describing atomic transport, computer simulations and isotope measurements have shown that atomic transport occurs by a much more collective process than ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000